Contour dynamics for surface quasi-geostrophic fronts
نویسندگان
چکیده
منابع مشابه
Surface quasi-geostrophic dynamics
The dynamics of quasi-geostrophic flow with uniform potential vorticity reduces to the evolution of buoyancy, or potential temperature, on horizontal boundaries. There is a formal resemblance to two-dimensional flow, with surface temperature playing the role of vorticity, but a different relationship between the flow and the advected scalar creates several distinctive features. A series of exam...
متن کاملAlmost sharp fronts for the surface quasi-geostrophic equation.
We investigate the evolution of "almost sharp" fronts for the surface quasi-geostrophic equation. This equation was originally introduced in the geophysical context to investigate the formation and evolution of fronts, i.e., discontinuities between masses of hot and cold air. These almost sharp fronts are weak solutions of quasi-geostrophic with large gradient. We relate their evolution to the ...
متن کاملAbsence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.
In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler...
متن کاملSurface kinetic energy transfer in surface quasi-geostrophic flows
The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and the atmospheric tropopause has been recently demonstrated in a wide range of conditions. Within this context, the properties of SQG in terms of kinetic energy (KE) transfers at the surface are revisited and further explored. Two well-known and important properties of SQG characterize the surface dynamics: (i) the i...
متن کاملAn Inviscid Regularization for the Surface Quasi-Geostrophic Equation
Inspired by recent developments in Berdina-like models for turbulence, we propose an inviscid regularization for the surface quasi-geostrophic (SQG) equations. We are particularly interested in the celebrated question of blowup in finite time of the solution gradient of the SQG equations. The new regularization yields a necessary and sufficient condition, satisfied by the regularized solution, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2020
ISSN: 0951-7715,1361-6544
DOI: 10.1088/1361-6544/ab8d16